首页> 外文OA文献 >Super-Resolution Compressed Sensing: An Iterative Reweighted Algorithm for Joint Parameter Learning and Sparse Signal Recovery
【2h】

Super-Resolution Compressed Sensing: An Iterative Reweighted Algorithm for Joint Parameter Learning and Sparse Signal Recovery

机译:超分辨率压缩感知:迭代重加权算法   用于联合参数学习和稀疏信号恢复

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In many practical applications such as direction-of-arrival (DOA) estimationand line spectral estimation, the sparsifying dictionary is usuallycharacterized by a set of unknown parameters in a continuous domain. To applythe conventional compressed sensing to such applications, the continuousparameter space has to be discretized to a finite set of grid points.Discretization, however, incurs errors and leads to deteriorated recoveryperformance. To address this issue, we propose an iterative reweighted methodwhich jointly estimates the unknown parameters and the sparse signals.Specifically, the proposed algorithm is developed by iteratively decreasing asurrogate function majorizing a given objective function, which results in agradual and interweaved iterative process to refine the unknown parameters andthe sparse signal. Numerical results show that the algorithm provides superiorperformance in resolving closely-spaced frequency components.
机译:在许多实际应用中,例如到达方向(DOA)估计和线谱估计,稀疏字典通常由连续域中的一组未知参数来表征。为了将常规压缩感测应用于此类应用,必须将连续参数空间离散化为有限的网格点集,但是离散化会导致错误并导致恢复性能下降。为了解决这个问题,我们提出了一种迭代的加权算法,该算法可以联合估计未知参数和稀疏信号。具体而言,该算法是通过迭代减少主给定目标函数的替代函数来开发的,从而导致逐步和交织的迭代过程来细化参数未知和信号稀疏。数值结果表明,该算法在求解近距离频率分量方面具有优越的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号